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Abstract— We propose an algorithm for decentralised naviga-
tion of multiple independent agents, applicable to Robotics and
Air Traffic Control (ATC). We present completely decentrali sed
Navigation Functions that are used to build potential fields
and consequently feedback control laws. Our approach employs
local sensing, limited by a maximum sensing range and inte-
grates priorities in the Navigation Function (NF) construction.
Static and moving obstacles are taken into account, as well as
agents that are unable to maneuver. A decentralised feedback
control law is used, based on the gradient of the potential field,
ensuring convergence and collision avoidance for all agents
while respecting a lower velocity bound. An upper limit for the
convergence time is given and simulation results are presented
to demonstrate the efficacy of the proposed algorithm.

I. I NTRODUCTION

Multi-agent systems have gained a lot of attention in
the last decade and are becoming increasingly popular in a
number of different applications. A large part of the literature
in this area focuses on achieving cooperative tasks, like
formation control and flocking, see for example [1], [2]. A
somewhat different class of problems is that of decentralised
navigation, where each agent pursues an independent task
but shares a common workspace. Two major applications
for this class of problems are mobile robot path planning
and automated aircraft navigation and collision avoidance. In
both of these problems an increased level of decentralisation
is desired to allow for greater performance, computational
efficiency and robustness with respect to agent failures.

A wide variety of methods for robot navigation has
emerged, employing various techniques. One such approach
handles the problem in two steps [3]: the workspace is
initially divided into cells, which are then used to formulate
the navigation problem as a graph search problem. Artificial
potential or vector fields are used to steer the agents between
cells, following the sequence provided by the graph search.
An extension of this scheme to multi-agent navigation is
presented in [4]. Although this class of solutions provides
an intuitive line of thought, it requires considerable pre-
calculations and thus a-priori knowledge. Moreover, perform-
ing the cell decomposition in the combined state space of all
agents and solving the graph search problem can become
computationally challenging for large groups of agents.

A different class of methods uses artificial potential fields
[5] to directly derive feedback controllers steering the agents
over the entire workspace. A common weakness of artificial
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potential fields is the existence of local minima away from
the goal that can prevent convergence. A special class of
potential fields, Navigation Functions (NFs), have been intro-
duced in [6], featuring a single, global minimum. The main
advantages of this class of methods are the formal perfor-
mance guarantees they can provide, computational efficiency
and their real-time feedback nature, that can compensate for
measuring and modeling errors. Navigation Functions have
been so far applied of multi-agent problems ranging from
robotic navigation [7] to ATC applications [8].

In this paper we further develop limited sensing in the
NF methodology, which combined with a feedback control
law designed on the principles of [8] yields a completely
decentralised solution for multi-agent navigation and colli-
sion avoidance in a workspace with obstacles. Our approach
requires no a-priori computation or knowledge and does not
rely at all on centralised controllers. Each agent requiresonly
its position within the workspace and knowledge about other
agents and obstacles within a sensing range around it. Thus,
our algorithm is completely distributed and its computational
cost does not depend on the total number of agents.

Furthermore, we introduce priorities in the construction of
the potential fields, as an additional design parameter: high
priority agents are allowed to maintain right of way wrt lower
priority ones. The priority scheme provides our algorithm
with some fault tolerance, by assigning agents with limitedor
no maneuvering capability the highest priority. Prioritisation
in ATC has been presented in [9] for a completely discrete
solution. In this paper we introduce discrete priorities in
the continuous NF framework, enabling the integration of
moving obstacles in the algorithm. Moving obstacles have
been also considered in [10], but their motion is assumed
to be known a-priori, as the algorithm pre-calculates the
complete trajectories of the agents.

The rest of this paper is organised as follows: Section
II defines the problem considered, followed by Section III
where the construction of the proposed potential field is
described. In Section IV the feedback control scheme is
presented. Finally, simulation results are given in V and the
conclusions of the paper are summarised in Section VI.

II. PROBLEM STATEMENT

We assume a scenario involvingN spherical agents of
radiusri described by the unicycle kinematic model:

q̇i =

[

ẋi

ẏi

]

= Ji · ui,

φ̇i = ωi,
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where qi = [ xi yi]
⊤ is agent’si position wrt a global

frameE , φi its heading angle between its longitudinal axis
and the globalx axis, andJi =

[

cos(φi) sin(φi)
]⊤

.
The control inputs are the linear velocityui and angular
velocityωi. All agents are operating in a spherical workspace
centered at the origin ofE with radiusRw and can sense each
other and obstacles within a sensing rangeRs around them.

The objective is to drive each agenti to its destinationqdi

while avoiding collisions with other agents or obstacles. We
want to enforce some form of prioritisation between agents,
so that those with high priority can maintain right of way
versus lower priority ones. Our goal is a completely decen-
tralised solution, handling both static and moving obstacles.

III. C OMPLETELY DECENTRALISEDNAVIGATION

FUNCTIONS

Decentralisation in the NF methodology has been intro-
duced by allowing each agent to ignore the targets of other
agents and navigate using its own NF-generated potential
field. Limited sensing is a key factor for decentralisation:
it allows the use of onboard sensors with finite range and
greatly limits the information that each agent needs to acquire
and process, significantly improving the applicability and
scalability of the algorithm in large scenarios. Limited sens-
ing so far has been introduced in a number of ways in NFs. In
[7] the authors use aC0 sensing scheme, but assume a priori
knowledge of the total number of agents. This requirement
is removed in [11], where a switching sensing graph is used,
resulting in a hybrid system. This approach does not ensure
global stability, as blocking situations may be reached. Thus,
convergence occurs only if the switching of the sensing graph
eventually stops. A completely locally computable NF has
been presented in [12], but only for single-agent problems
and with the assumption that at each time instant there is
at most one visible obstacle. This effectively means that the
algorithm solves the collision with one obstacle at a time,
which is not practical in a multi-agent scenario.

Our work here improves upon the above approaches,
offering completely decentralised navigation for multiple
independent agents with limited sensing. Moreover, priori-
tisation as well as static and moving obstacles have been
also incorporated, to enable the application to a wider class
of real problems, especially from the fields of Robotics and
ATC. We propose an absolutely locally computable potential
field that takes into account multiple agents according to
their priorities, as well as static and moving obstacles. This
potential field used in a control scheme such as the one
presented in [8] can offer decentralised, non-cooperative
navigation for multiple agents. In fact, any controller that
ensures a decreasing rate for the potential’s value over time
is applicable. Thus, the use of the potential field presented
here is not limited to unicycle agents but can also be applied
to other types of agents (holonomic or non-holonomic), when
combined with an appropriate control scheme.

Decentralised NFs have been of the form:

Φi =
γi + fi

((γi + fi)k + Gi · βi)
1/k

, (1)

where the target functionγi, cooperation functionfi, obsta-
cle functionGi and workspace boundary functionβi depend
on various euclidean distances, and have length units in some

positive power. EspeciallyGi =

N
∏

j=1

gij , based ongij =

gij

(

||qi − qj ||
2
)

, can vary in a very wide range within a
single scenario. This introduces a number of difficulties:

• Tuning the NF parameters (eg. exponentk used to
eliminate local minima) is difficult, depends on the scale
of each problem and often requires extreme values.

• The overall behavior of the potential field becomes
unpredictable, counter intuitive and impractical.

• High Gi values, combined with highk values that are
required (see above), cause numerical problems.

We propose here to scale all distances using some reference
lengths that are native to each problem setting. Thus we
nondimensionalise the NF construction and derive a single
potential field for a class of similar real problems.

Using dimensionless functions for the metricsγi, Gi and
βi to construct the potential (1) results in a more elegant
and predictable behavior of the potential field, enabling easier
parameter tuning and limiting numerical problems in simula-
tions and experiments. Furthermore, the results of parameter
tuning are valid for all similar problems. The benefits of
the improvement we propose are not only practical; limited
sensing by considering a finite sensing radius can now be
implemented in a more natural way. Finally, prioritisation
can be integrated in the potential field, enabling some agents
to maintain right of way wrt lower priority agents.

A. Priority classes

We assume that each agenti, i ∈ {1, . . . , N} has an
associated priority classci ∈ N. Lower values ofci represent
higher priority, withci = 0 denoting either uncontrolled or
faulty agents, or obstacles, that can be stationary or moving.
We define thethreat set Ti of agenti as the set of all agents
(or obstacles) of the same or higher priority class, i.e. with
the same or lowerci: Ti , {j ∈ {1, ., N} \ {i} |cj ≤ ci }.
Priorities are used here in the following sense: each agenti
takes into account all other agents and obstacles that belong
to its threat setTi, while ignoring agents of lower priority,
i.e. agents withcj > ci. Thus, agents with high priority have
right of way, while lower priority agents steer around them.

The higher priority class,ci = 0 is reserved for obstacles
(stationary or moving) and uncontrolled or faulty agents.
Thus if an agenti is known to experience a degradation of its
navigation and collision avoidance capabilities it is assigned
the priority classci = 0, in order to have maximum priority
and force all other normally operating agents to avoid it.
Using priorities in this way means that two agentsi and j
have mutual sensing between them, i.e. they both take each
other into account to navigate,i ∈ Tj and j ∈ Ti, if and
only if ci = cj 6= 0, i.e. they belong to the same priority
class, other than the highest one. Otherwise, if one of the
agents, sayi, belongs to a higher priority class (even the
highest one),0 ≤ ci < cj , then i ∈ Tj but j /∈ Ti. Thus,
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at all combinations ofci, cj where at least one of them
is nonzero, i.e.max(ci, cj) > 0, there is at least one-way
sensing between agentsi and j. As will be shown in the
following, this ensures that all collisions will be avoided,
at least by one of the two involved agents. Finally, when
ci = cj = 0, both agentsi and j are uncontrolled and any
collisions between them can not be avoided, as they are both
unable to maneuver.

This priority scheme is intuitive and simple to implement,
yet can be usefull in a wide range of applications. One
such example is ATC, where the use of priorities has shown
beneficial results [13]. Other applications can include hetero-
geneous mobile robots executing tasks of different priorities.

B. Limited sensing

We use the dimensional obstacle functionĝij as defined
in previous NF approaches:

ĝij = ĝji = ||qi − qj||
2 − r2

ij (2)

whererij , ri+rj. By the above definition,̂gij is zero when
agentsi, j touch, i.e. when||qj − qi|| = rij , and increases
as they move away from each other.

Since each agent can sense or communicate with other
agents that are within a maximum sensing rangeRs away, i.e.
when ||qj − qi|| ≤ Rs, we nondimensionalise the obstacle
function ĝij between agentsi, j into gij :

gij =

{

L(ĝij)

R2
s−r2

ij

, ||qi − qj || ≤ Rs

1, ||qi − qj || > Rs

(3)

where the shaping functionL(x) is:

L(x) = x3 − 3x2 + 3x (4)

The following properties hold forL(x):

L(0) = 0 (5a)

L(1) = 1 (5b)

L′(x) > 0 ∀x ∈ [0, 1) (5c)

L′(1) = L′′(1) = 0 (5d)

The dimensionless obstacle functiongij is zero wheni,j are
in a collision, i.e.||qi − qj || = rij and increases up to1 at
the boundary of the sensing area, i.e. when||qi − qj || = Rs.
Outside the sensing range of agenti, it is constant and equal
to 1. Using the above properties ofL(x) it can be verified
thatgij is C2 in the interior of the free space, i.e. away from
collisions, wherêgij ∈ (0, +∞). Thus, the potentialΦi is
also C2, as required for it to be a Navigation Function [6].
Functiongij = gij (||qi − qj ||) is plotted in Figure 1. Since
gij is constantly1 when ||qi − qj || ≥ Rs, each agenti is
only affected by other agentsj ∈ Ti that are up toRs away.

We propose the use of the following form ofGi:

Gi =
∏

j∈Ti

gij (6)

The priority classes defined in III-A are used here to allow
an agenti to ignore agentj whenci < cj , while agentj has

ri + rj Rs
0

1

||qi − qj ||

g i
j

Fig. 1. Obstacle functiongij wrt distance||qi − qj || between agentsi, j

||qi||

β
i

Rw − Rs Rw − ri
0

1

Fig. 2. Workspace boundary functionβi wrt ||qi||

to manoeuvre aroundi. Essentially, this construction ofGi

requires only the knowledge about those agents inTi that
are within the sensing range:

Gi =
∏

j∈T̃i

gij (7)

whereT̃i = {j ∈ Ti | ||qi − qj || < Rs } is the “close threat”
set, i.e. the subset ofTi within the sensing rangeRs.

Similarly to gij , we modify βi to limit the effect of the
workspace boundary in a zone of widthRs near it. The
dimensional workspace boundary functionβ̂i is:

β̂i = (Rw − ri)
2
− ||qi||

2

The dimensionless functionβi is derived similarly togij :

βi =







L(β̂i)
(Rw−ri)

2−(Rw−Rs)2
, ||qi|| ≥ Rw − Rs

1, ||qi|| < Rw − Rs

(8)

Thus, as Figure 2 shows,βi is zero when agenti touches the
workspace, i.e.||qi|| = Rw − ri, and varies in aC2 fashion
to exactly1 when agenti is at a distanceRs or more away
from the workspace boundary, i.e.||qi|| ≤ Rw − Rs.

C. Potential Construction

For the target functionγi we use the following form:

γi =
||qi − qdi||

2

R2
w

(9)

Since the largest distance between any points in the spherical
workspace of radiusRw is 2Rw, γi is equal to or lower than
4 for any combination ofqi, qdi.
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Fig. 3. Obstacle functionGi, workspace boundary functionβi, target
function γi and the resulting potentialΦi for xi ∈ [0, Rw], yi = 0.

The cooperation functionfi is used here as in [7]:

fi (Gi) =

{

a0 +
∑3

l=1 alG
l
i, Gi ≤ X

0, Gi > X
(10)

where a0 = Y , a1 = 0, a2 = −3Y
X2 , a3 = 2Y

X3 and X ,
Y are positive parameters. The aim offi is to become
non-zero in proximity situations, forcing an agent that has
already reached its destination to temporarily move away
from it to facilitate the convergence of near-by agents.X
sets a threshold forGi, such that values ofGi lower than
X activate the cooperation functionfi. ParameterY defines
the maximum value offi, which is attained whenGi = 0.

The final result of using the above definedGi, βi andγi

in (1) for a setup with 3 obstacles is shown in Figures 3 and
4. The targetqdi is set in the center of the workspace and 3
obstacles are included. Figure 4 presents the potential field
in the workspace, while Figure 3 shows the values ofGi, βi,
γi andΦi along the positivex axis, that crosses through the
center of one of the obstacles that is placed between the target
and the workspace boundary. In this example the cooperation
functionfi is not activated, i.e.fi = 0 everywhere. As Figure
3 shows,Gi and βi become less than1 only within the
sensing rangeRs of the obstacle and workspace boundary,
respectively. The dotted blue line represents the value of
Φi for Gi = βi = 1 everywhere, i.e. without the effect of
any obstacles or the workspace boundary. As expected, this
coincides with the actualΦi outside the sensing range of the
obstacle and the workspace boundary.

D. Proof of correctness

It has been shown in [6] that NF properties are invariant
under diffeomorphisms. We will exploit this property here
to ensure that the potential (1) using the definitions of
γi, fi, Gi and βi given above maintains the navigation
properties and can provide almost global convergence to the
destination. The shaping functionL(x) is smooth and strictly
increasing in the set[0, 1) (see (5c)). Thus,gij = gij (ĝij) :
[

0, R2
s − r2

ij

)

→ [0, 1) is a diffeomorphism when agentj is
inside the sensing area of agenti. Generalising,gij (ĝij) is
a diffeomorphism wheneverj ∈ T̂i. Thus, the critical points

x
y −Rw

0
xj

Rw

−Rw

0

Rw

0

0.5

1

Fig. 4. NF field in a workspace with 3 obstacles and local sensing.

of Φi inside the sensing range of agenti are the same with
those of the potential in [11], which does not uses the non-
dimensionalisation and shaping function. Moreover, agents
outside T̃i do not affectΦi, and Gi =

∏

T̃i
gij becomes

equal to
∏

T̃i\j gij in a C2 way as||qi − qdi||
2 reachesRs.

Thus, agents outside the sensing range can be ignored and
do not affect the navigation properties ofΦi.

Consequently, the potential presented here is a NF and as
such it provides almost global navigation and collision avoid-
ance for allk higher than a finite lower bound. Moreover,
since only nearby agents and obstacles affect the potential,
the number ofgij that contribute toΦi at any given time
is significantly reduced, especially in scenarios with many
agents. Simulation experience with NFs indicates that the
minimum value of the exponentk required to eliminate local
minima increases with the number of contributing obstacles.
Thus, the exponentk needed for the potential presented here
is in most cases lower than the one required in [11].

IV. COMPLETELY DECENTRALISEDNAVIGATION

We can exploit the navigation properties of the above
potential fieldΦi to avoid collisions and guide all agents
to their destinations. In fact, any controller that can maintain
a decreasing rate for each potentialΦi, i.e. Φ̇i < 0 can be
employed in combination with the potential field presented
previously to stabilise the agents to their targets, while
avoiding collisions. Such a control law has been presented
in [8] for unicycle aircraft-like agents in 3D space.

Deriving a controller for planar unicycles using the same
principles can be achieved by neglecting the vertical velocity
in [8]. The resulting control scheme employs the projection
of the gradient∇iΦi =

[

Φix Φiy

]⊤
on the agent’si

longitudinal (heading) direction:

Pi = J⊤
i · ∇iΦi (11)

where Ji =
[

cos(φi) sin(φi)
]⊤

The sign ofPi, si =
sgn(Pi), determines the direction of motion, where:

sgn(x) ,

{

1, if x ≥ 0

−1, if x < 0.
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Moreover, we use the partial derivative∂Φi

∂t , which sums the
effect of all but theith agents’ motion onΦi:

∂Φi

∂t
=

∑

j 6=i

∇jΦ
⊤
i · Jjuj

where∇jΦi = ∂Φi

∂qj
is the gradient ofΦi with respect toqj .

The proposed control law for the linear velocityui is:

ui =

{

−siUi,
∂Φi

∂t ≤ Ui (|Pi| − ε)

−si
Uiε+

∂Φi
∂t

|Pi|
, ∂Φi

∂t > Ui (|Pi| − ε)
(12)

whereε > 0 is a small constant andUi the nominal velocity:

Ui =

{

udi, ||qi − qdi|| > di
||qi−qdi||

di
· udi, ||qi − qdi|| ≤ di.

(13)

which follows identically a reference signaludi away from
the targetqdi and is continuously reduced to0 inside a ball
of radiusdi aroundqdi. Velocity ui is designed to follow the
nominal velocityUi when stability and conflict avoidance is
ensured and only diverge from it temporarily when absolutely
required.The angular velocityωi is used to align the agent
with the integral lines of the potential field:

ωi =















0, Mi ≥ εφ

Ωi ·
(

1 − Mi

εφ

)

, 0 < Mi < εφ

Ωi, Mi ≤ 0,

(14)

where: Mi , φ̇nhi
(φi − φnhi

) ,

Ωi , −kφ (φi − φnhi
) + φ̇nhi

.

The nonholonomic heading angleφnhi represents the head-
ing of sgn(pi)∇iΦi:

φnhi , atan2 (sgn (pi)Φiy, siΦix) , (15)

where the functionatan2 is:

atan2(y, x) , arg (x, y) , (x, y) ∈ C,

andpi = J
⊤
di·(ni1 − ni1d) is the position vector with respect

to the destination, projected on the longitudinal axis of the
desired orientation. Consequently,sgn(pi) is equal to1 in
front of the target configuration and−1 behind it. Finally,
εφ is a small positive constant andkφ a positive gain.

A. Stability and convergence analysis

Since the stability analysis in [8] does not rely on the
specific Navigation Function used, one can follow the same
line of thought here to prove that the above control scheme
ensures a decreasing rate for allΦi over time:

Φ̇i ≤ −udiε (16)

Thus, convergence and collision avoidance are guaranteed.
It should be noted though that here we have not included
in (1) a nonholonomic obstacleHnh to render it Dipolar
[14]. Thus, the integral lines of the resulting potential field
approach the destination with arbitrary orientation, allowing
only its position to be stabilised.

The use of the priority scheme described in III-A means
that collisions between any two agentsi, j are avoided when
at least one of them has non-zero priority,max(ci, cj) > 0,
i.e. one of them is able to maneuver. This holds because by
construction a NF is transverse on the boundary of collisions
with other agents or obstacles. One can easily show similarly
to [8] that the above control scheme ensures that∇iΦiui ≤ 0
holds always, i.e. all agents move towards the direction that
decreases their potential. Thus, when there is at least one-
way sensing between any two neighboring agents, at least
one of the agents moves away from the other and collisions
between them are avoided. Off course, when both agents
are uncontrolled,ci = cj = 0, no collision avoidance can be
performed between them. Thus, the proposed control scheme
combined with the priority rules in section III-A ensures that
all collisions between two controlled agents or a controlled
and an uncontrolled one or an obstacle are avoided.

The time required for each agenti to reach an area of
radiusdi around its targetqdi can be bounded by considering
that the control law presented above ensures thatΦ̇i ≤ −Uiε.
We will assume here that each agent starts further away
from its target thandi, i.e. that each agent has to move a
significant amount to reach its destination. SinceUi = udi

whenever||qi − qdi|| ≥ di, we deduce thaṫΦi ≤ −udiε, i.e.
the decreasing rate ofΦi is smaller than a finite negative
quantity−udiε outside a circle of radiusdi aroundqdi. We
denote asΦi0 = Φi(t = 0) the initial value ofΦi and Φid

the value ofΦi when agenti reaches for the first time at
a distancedi away fromqdi. Thus, the total change in the
potential value from the initial position of each agenti up to
when it reaches the circle of radiusdi around its targetqdi is
∆Φi = Φid−Φi0. Since in a real scenario there should be no
collision at the initial conditions,Φi0 < 1∀i ∈ {1, . . . , N}.
Moreover, asdi > 0, Φid > 0. Consequently:

∆Φi = Φid − Φi0 > −1 (17)

Denoting astid the first time instant that agenti reaches a
distancedi from qdi and assuming a constantudi over time,
by (16) we have:

∆Φi =

∫ tid

0

Φ̇idt ≤ −udiεtid (18)

Combining (17) and (18) we derive:

− 1 < ∆Φi ≤ −udiεtid =⇒ (19)

tid <
1

udiε
(20)

Thus, the timetid required for agenti to reach a distance
di from qdi is always less thattimax = 1

udiε
. It should be

noted though that agenti may enter the circle of radiusdi

aroundqdi but exit again if forced to do so by other agents
or obstacles. However,timax gives a reasonable limit for the
time required to reach the vicinity of the targetqdi. Finally,
the maximum time needed for all agents to converge within
distancedi from their targets is:

tMAX = max
i

(timax) (21)
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V. SIMULATION RESULTS

In order to demonstrate the effectiveness of the proposed
control approach we present simulation results for two pos-
sible application scenarios. The first one can be described
as astream crossing situation: a stream of agents move in
parallel, while another agent starting from one side of the
stream is assigned a destination in the other side, thus being
forced to cross it. Agents1-4 are given higher priority, i.e.
lower ci, than agent5, allowing them to move straight while
the crossing agent5 maneuvers around them.

The result of this scenario can be seen in Figure 5. Agents
1-4 do not maneuver at all, as their potential fields do not
consider the intruding agent5. On the other hand, agent5
maneuvers around all other agents and finally reaches its
destination without any collisions.

x

y

1 2

3

4

5

Fig. 5. High priority agents1-4 move straight in a stream, while low
priority agent5 maneuvers around them to reach its destination.

For the second test case we used the same initial and final
positions with inverted priorities. Thus, agents1-4 now have
low priority, while the high priority agent5 crosses their
paths. This scenario could resemble a situation in ATC where
an aircraft in emergency condition assumes higher priority
to facilitate its motion. The results are shown in Figure 6.
Agents1-4 are forced into large deviations from their straight
line paths in order to avoid collisions with agent5 and each
other. Finally, all agents converge to their destinations.

VI. CONCLUSIONS

We have presented an algorithm for multi-agent naviga-
tion and collision avoidance employing a feedback control
scheme. Our work here combines contributions from pre-
vious work in the NF methodology to derive a completely
decentralised algorithm. Furthermore, we have extended the
capabilities of our algorithm by integrating prioritisation
and allowing for static and moving obstacles, as well as
disabled agents. Guarantees for convergence and collision
avoidance are given and the maximum convergence time is
discussed. Future work in this area is directed towards the
use of a scheme for assigning and updating agents’ priorities
according to the needs of applications from the fields of
Robotics and Air Traffic Control (ATC), and studying its
interaction with the algorithm presented here.

x

y

1 2

3

4

5

Fig. 6. High priority agent5 crosses the path of lower priority agents
1-4, forcing them to maneuver around it and each other to reach their
destinations.
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